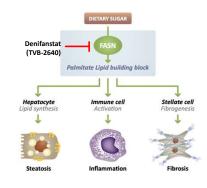


# A baseline signature of metabolites involving the gut-liver axis predicts MRI-PDFF response to FASN inhibitor TVB-2640 in NASH patients: results from the FASCINATE-1 study




<sup>1</sup>Rohit Loomba, <sup>2</sup>Marie O'Farrell, <sup>2</sup>Eduardo B. Martins, <sup>2</sup>Katharine Grimmer, <sup>2</sup>Alithea M. Zetter, <sup>2</sup>Wen-Wei Tsai, <sup>3</sup>Cristina Alonso, <sup>3</sup>Ibon Martinez-Arranz, <sup>2</sup>George Kemble, <sup>4</sup>Stephen A. Harrison <sup>1</sup>UC San Diego School of Medicine, CA, USA, <sup>2</sup>Sagimet Biosciences, San Mateo, CA, USA, <sup>3</sup>OWL, Derio, Spain,

<sup>4</sup>Pinnacle Clinical Research. TX. USA.

### INTRODUCTION

- · TVB-2640 is a potent and selective FASN inhibitor
- Directly tackles 3 hallmarks of NASH by acting on hepatocytes, stellate cells, and pro-inflammatory cells



# OBJECTIVE

Explore baseline predictive markers of liver fat response in FASCINATE-1

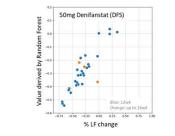



- Multicenter, randomized, placebo-controlled trial
- · Primary endpoint: relative liver fat reduction by MRI-PDFF and safety
- Secondary endpoint: % pts ≥30% relative reduction of liver fat
- Serum markers included ALT, AST, tripalmitin, lipidomics, adiponectin, PRO-C3, ELF (results previously described<sup>1</sup>)

## METHODS

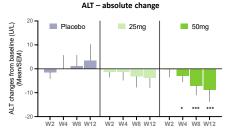
Study design, demographics and results of FASCINATE-1 have previously been described<sup>1</sup>. Population is US cohorts. Baseline blood samples from FASCINATE-1 were profiled for ~470 metabolites by LC/MS/MS. Metabolomic results from the 50mg denifanstat group (n=34) were analysed using nonlinear regression machine learning algorithms to identify a biomarker panel that predicted liver fat response as measured by MRI-PDFF.

# RESULTS






0.05, \*\*p<0.005, \*\*\*p<0.001. LSM difference versus placebo for liver fat, ANCOVA.


#### 3 Baseline metabolomic signature predicts liver fat response to denifanstat





| Metabolite                | Class                 | Relative liver fat<br>reduction                     | <u>&gt;</u> 25% |
|---------------------------|-----------------------|-----------------------------------------------------|-----------------|
| Ursodeoxycholic acid      | Bile acid             | Sensitivity                                         | 0.841           |
| DL-2-Aminocaprylic acid   | Amino Acid Derivative | Sensitivity                                         | 0.802           |
|                           |                       | Specificity                                         | 0.860           |
| Sarcosine                 | Amino Acid            | PPV                                                 | 0.733           |
| Slycoursodeoxycholic acid | Bile acid             | NPV                                                 | 0.899           |
| D(-)-2-Aminobutyric acid  | Amino Acid derivative |                                                     |                 |
| PC(O-18:0/22:4)           | Glycerophospholipid   | 50mg data. PPV; positiv<br>NPV; negative predictive |                 |

### ALT and LDL decrease with denifanstat treatment, in a time-dependent manner



\*p<0.05, \*\*p<0.005, \*\*\*p<0.001. One sample T and Wilcoxon tes

Δ

CONCLUSIONS

also be explored.

liver fat response to denifanstat

# Signature components do not change meaningfully with denifanstat treatment

1. Denifanstat significantly decreased liver fat in FASCINATE-1.

dependent manner. This indicates potential for improvement in both hepatic and cardiovascular health with FASN inhibition

3. A predictive metabolomic signature was identified that predicts

Denifanstat is currently being tested in FASCINATE-2, a Phase 2b

tested as an independent validation group for the predictive

signature of liver fat response. Translation to biopsy results will

biopsy study in NASH. Baseline samples from FASCINATE-2 will be

2. ALT and LDL significantly decreased at week 12, in a time

| Metabolite                | Fold Change         |  |
|---------------------------|---------------------|--|
| Metabolite                | Week 12 vs baseline |  |
| Ursodeoxycholic acid      | 2.06 (0.16)         |  |
| DL-2-Aminocaprylic acid   | 1.10 (0.13)         |  |
| Sarcosine                 | 1.30 (0.18)         |  |
| Glycoursodeoxycholic acid | 2.51 (0.17)         |  |
| D(-)-2-Aminobutyric acid  | 1.09 (0.14)         |  |
| PC(O-18:0/22:4)           | 1.03 (0.16)         |  |
| Mean (SEM), 50 mg         |                     |  |

LDL cholesterol - absolute change

50mg

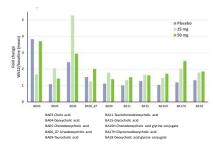
25mg

(mg/dL

basel EM)

from t

ag Š


char

LDL-C

20

Placebo

5 Bile acids do not change meaningfully with denifanstat treatment, although non-significant increases observed



## ACKNOWLEDGEMENTS

We are grateful to the patients, their families and investigators that participated in this study.

#### REFERENCES

1. Loomba et al., Gastroenterology 2021, 165, 1475-1486

Contact: marie.ofarrell@sagimet.com