

TVB-2640,

A Novel, First-in-Class, Fatty Acid Synthase (FASN) Inhibitor, Biomarker and Metabolomic Correlations With MRI-PDFF Response

Marie O'Farrell Vice-President, Research and Development NASH Summit 2021

Outline

FASN background

Phase 2a FASCINATE-1

Efficacy

Biomarkers

Predictive lipidomics

FASN is a compelling target in NASH Directly involved in 3 key drivers of the disease

TVB-2640 is designed to be a potent fat synthesis inhibitor

TVB-2640 – first-in-human FASN inhibitor

- Orally-available small molecule (MW=440)
- Once-daily dosing (10-12 hr half-life in blood)
- Efficacy in preclinical NASH models
 - In vitro stellate cells, pro-inflammatory cells, liver microtissues
 - Diet induced mouse models Gubra
 - FAT-NASH CCl4 mouse model Scott Friedman

TVB-2640 inhibits liver fat synthesis in Phase 1 clinical trial

FASCINATE-1 Phase 2a Study Design

Phase 2a, global, multicenter, randomized, placebo-controlled trial Oral, once-daily, 12 weeks

Primary Endpoints

- Liver fat reduction by MRI-PDFF
- Safety

Secondary Endpoints

- % pts ≥30% reduction of liver fat
- ALT, AST

Comprehensive biomarkers in US placebo, 25 mg and 50 mg

- Fibrosis markers
- Inflammation markers
- Lipidomics
- SNPs relevant to NALFD/NASH

Inclusion criteria

- ≥ 8% liver fat
- MRE ≥ 2.5kPa or recent biopsy

Additional cohorts recently completed

- China: placebo vs 50 mg
- US: 75 mg open label in US
 Biomarker data not available or not feasible

Demography and baseline characteristics

Median (Q1, Q3)	Placebo (n=31)	25 mg (n=33)	50 mg (n=35)	
Age, y	52 (46, 58)	58 (53, 62)	55 (44, 62)	
Male, n (%)	14 (45.2)	18 (54.5)	22 (62.9)	
T2D, n (%)	17 (54.8)	25 (75.8)	13 (37.1)	
Ethnicity/Hispanic, n (%)	25 (80.6)	22 (66.7)	24 (68.6)	
Weight, kg	83.7 (74.0, 96.8)	95.4 (84.9, 105.6)	92.0 (83.0, 101.0)	
BMI (kg/m²)	31.2 (29.3, 35.1)	34.0 (29.7, 38.1)	32.8 (29.6, 35.2)	
ALT (U/L)	25 (16, 46)	28 (23, 36)	29 (24, 43)	
AST (U/L)	21 (15, 30)	21 (17, 26)	23 (20, 30)	
ALP (U/L)	82 (72, 98)	76 (62, 92)	74 (58, 103)	
GGT (U/L)	33 (22, 58)	32 (22, 40)	39 (25, 49)	
Glucose (fasting) (mg/dL)	108 (86, 167)	152 (103, 187)	98 (80, 124)	
HbA1c, %	6.4 (5.9, 8.6)	7.1 (6.2, 8.3)	5.8 (5.5, 6.4)	
Insulin (fasting) (μU/mL)	17 (15, 24)	23 (13, 37)	22 (14, 32)	
Apolipoprotein B (mg/dL)	100 (84,126)	109 (90, 117)	104 (89, 124)	
Total Cholesterol (mg/dL)	192 (162, 229)	194 (161, 203)	189 (167, 225)	
LDL (mg/dL)	116 (98, 139)	127 (104, 136)	114 (94, 153)	
HDL (mg/dL)	43 (39, 53)	40 (36, 54)	44 (37, 51)	
Triglycerides (mg/dL)	157 (123, 248)	159 (113, 218)	163 (124, 262)	
MRI-PDFF (%)	15.3 (11.8, 22.2)	14.3 (10.4, 22.3)	15.8 (12.3, 19.6)	
MRE (kpa)	3.0 (2.7, 3.4)	2.9 (2.7, 3.2)	3.0 (2.8, 3.2)	

Potent, dose-dependent reduction of liver fat

Mean relative liver fat reduction

MRI-PDFF at week 12

Mean absolute liver fat reduction

MRI-PDFF at week 12

Responder frequency

Patients with ≥30% relative reduction

TVB-2640 was well tolerated

Treatment Emergent Adverse Event (TEAE) Classification	US	US	US
	Placebo	25mg	50 mg
	N=31	N=33	N=35
Any TEAE	Gr. 1: 12 (38.7%)	Gr. 1: 18 (54.5%)	Gr. 1: 12 (34.3%)
	Gr. 2: 7 (22.6%)	Gr. 2: 7 (21.2%)	Gr. 2: 6 (17.1%)
TEAE leading to drug withdrawal	0	2 (6.1%)	0
Treatment Emergent Serious Adverse Event (SAE)	0	0	0
Drug-related TEAE	Gr. 1: 3 (9.7%)	Gr. 1: 10 (30.3%)	Gr. 1: 9 (25.7%)
	Gr. 2: 1 (3.2%)	Gr. 2: 2 (6.1%)	Gr. 2: 1 (2.9%)
TEAE leading to death	0	0	0

- TVB-2640 appears to be well tolerated
- No dose related significant adverse events relative to placebo
- Majority of AEs were Grade 1; no Grade 3 drug-related AEs were reported

Improvement consistent across other key drivers of NASH

TVB-2640 reduces tripalmitin and significantly reduces lipotoxic ceramides

Ceramide C18:1/16:0 Decreased lipotoxins

TVB-2640 showed biomarker improvements in key NASH pathways

Liver fat

Dose-dependent response

Body weight

- No meaningful change with treatment (median change at 50 mg of 0.2 kg)
- No correlation with liver fat change
- Indicates direct effect of TVB-2640 on liver fat as expected

Correlations between liver fat response and other biomarkers

	Plac	ebo	TVB-2640 25mg group			TVB-2640 50mg group				
	Non-Res	sponders	Respo	onders	Non-Res	sponders	Respo	onders	Non-Res	sponders
	%Change	p-value	%Change	p-value	%Change	p-value	%Change	p-value	%Change	p-value
ALT (U/L)	-7%	0.61	-36%	0.016	3%	0.69	-21%	0.003	-13%	0.1
Adiponectin (ug/ml)	-1%	0.63	0%	1	-1%	0.86	19%	0.15	19%	0.13
BW (kg)	1%	0.21	-3%	0.16	0%	0.73	0%	0.6	0%	0.58
ELF Score	-1%	0.96	-6%	0.036	2%	0.24	-3%	0.08	-4%	0.08
FGF21 (pg/ml)	-3%	0.99	-29%	0.31	35%	0.017	34%	0.045	89%	0.007
HA (ng/ml)	1%	0.74	-30%	0.08	27%	0.016	-16%	0.039	-17%	0.16
IP10 (ng/ml)	-1%	0.24	-29%	0.031	1%	0.49	-1%	0.89	-10%	0.17
PIIINP (ng/ml)	4%	0.39	-22%	0.08	2%	0.95	-11%	0.44	-10%	0.54
ProC3 (ng/ml)	7%	0.21	-1%	0.84	8%	0.28	-8%	0.46	-25%	0.019
TIMP1 (ng/ml)	-3%	0.99	-25%	0.016	1%	0.59	-15%	0.044	-22%	0.027
Tripalmitin	25%	0.56	-53%	0.016	-9%	0.37	-57%	6.56E-04	-63%	0.002
Linoleic acid	-1%	0.75	28%	0.47	-1%	0.93	-10%	0.31	19%	0.032
Palmitic acid	-5%	0.82	-5%	0.81	-1%	0.99	-10%	0.16	-2%	0.32
Palmitoleic acid	2%	0.99	9%	0.69	15%	0.33	-18%	0.22	20%	0.52
TIMP1 (ng/ml)_excluding 101131	-3%	9.88E-01	-25%	1.56E-02	1%	5.95E-01	-18%	4.79E-02	-22%	2.73E-02

p<0.05 p<0.01 p<0.001

- Follow up analysis liver fat as a continuous variable
- Expand to additional markers

TGs: decreased shorter chain saturated or monounsaturated fa, while some polyunsaturated increased

Lipidomics approach initiated to identify predictive response markers

Developed algorithm on "training cohort" (14)
Tested algorithm on "validation cohort" (14)
Used liver fat as a continuous variable

Metabolite panel

Ursodeoxycholic acid

DL-2-Aminocaprylic acid

Sarcosine

Glycoursodeoxycholic acid

D(-)-2-Aminobutyric acid

PC (0-18:0/22:4)

A baseline metabolite profile predicts liver fat changes in the 50mg cohort

Components of predictive signature suggest role for gut-liver axis

Marker	Class	Function
Ursodeoxycholic acid	Bile acid derivative	Secondary bile acid made from chenodeoxycholic acid via epimerization of the 7-alpha>7 beta-hydroxy group by gut bacteria
Glycoursodeoxycholic acid	Bile acid derivative	Glycine conjugated secondary bile acid
DL-2-Aminocaprylic acid	Alpha Amino Acid Derivative	Aminooctanoic acid
Sarcosine	Alpha Amino Acid Derivative	N-methyl glycine, naturally found in muscles and other body tissues; intermediate in metabolism of choline to glycine.
D(-)-2-Aminobutyric acid	Alpha Amino Acid Derivative	Function not well defined –can activate AMPK, modulates glutathione homeostasis
PC(O-18:0/22:4)	Glycerophospholipid	Function in membranes, metabolism, signaling

Summary

Demonstrated proof-of-concept in robust FASCINATE-1 Ph2a program

- Liver fat relative reduction of 28% over 12 weeks
- 61% patients achieved ≥30% reduction
- Biomarker improvement in several key NASH pathways
 - Validates expected mechanism of action: impacts steatosis, inflammation/lipotoxicity and fibrosis
- Biomarker for patient selection
 - Preliminary serum metabolite signature correlated to liver fat change at 50 mg
- FASCINATE-2 Ph2b biopsy study recently initiated
 - Expand biomarker analyses and extend to histology endpoints
- TVB-2640 has potential to be a foundational NASH therapy

Acknowledgements

The patients and their families
Clinical sites in US and China
OWL lipidomic team
Ascletis team
Sagimet team

