Mechanism and rationale for inhibition of FASN as a novel therapy for KRAS-mutant non-small-cell lung cancer patients

Tim Heuer

FASN Inhibitor Drug Development

- FASN has long been a target of interest for drug development
 - FASN levels are increased in later stage disease
 - High levels of tumor FASN correlates with poor prognosis
 - FASN inhibition is highly selective for tumor cells tumor cell apoptosis occurs but leaves normal cells unharmed
 - Early attempts at FASN inhibitors did not advance to the clinic due to poor selectivity resulting in significant off-target toxicities

FASN Expression Correlates with Poorer Survival in NSCLC Patients

3-V Bio Creates TVB-2640: A first-in-class next generation FASN inhibitor

- Oral, potent, highly bioavailable and reversible inhibitor of FASN
- Selective for FASN no off target toxicities (such as weight loss) observed at therapeutic doses
- Other FASN inhibitors are preclinical (GSK, Infinity, Janssen)

RAS Mutation Associates with FASN Sensitivity in NSCLC Cell Lines

FASN Sensitivity NSCLC Cell Lines

FASN inhibitor-sensitive NSCLC cell lines enriched for mutant KRAS

FASN Inhibition Disrupts Tumor Cell Lipid Rafts, Ras Localization

Rafts: High density NRas: Membrane-associated

Rafts: Decreased density NRas: Punctate, intermittent

Rafts: Very low intensity NRas: Cytoplasmic

TVB-3664 Inhibits Palmitoylation of RAS-Associated Signaling Proteins in KRAS-Mutant NSCLC Lines

NSCLC Cell Line	H	520	A5	49
KRAS genotype	W	/Т	G12S	
	TVB-3664 (0.05 μM)			
	-	+	-	+
Palmitoyl-NRas	1		-	-
Palmitoyl-Akt	=		=	
Palmitoyl-EGFR			-	
Palmitoyl-Cav1			-	-
Palmitoyl-α-tubulin	-	-	-	١
Palmitoyl-β-tubulin	acrossie.	and the	Berning	

- KRAS activating mutation increases protein palmitoylation
- FASN inhibition diminishes palmitoylation of oncogenic proteins

R. Ventura

FASN Inhibition Inhibits Wnt Signaling in KRAS Mutant NSCLC Cell Lines

FASN Inhibition Blocks β -catenin Pathway Activity and Myc Expression

TCF Promoter Luciferase Expression

Pathway Signal Transduction and Wnt-Responsive Protein Expression

3-V BIOSCIENCES

FASN Inhibition Modulates Gene Expression in Metabolism, Proliferation and Survival Pathways

22Rv1 Cells

	1 μM TVB-3166 0.1 μM TVB-316	56				
 Vehicle 0.1 μM TVB-3166 1 μM TVB-3166 	<u>Up-Regula</u> • Lipid, Si Metabo • P53 Sig	ated Pathways (p<0.01) terol, Pyruvate, Amino Acid blism naling	<u>Down-Re</u> • DNA Re • DNA Re • Cell Cyc • PI3K-Al	 <u>Down-Regulated Pathways (p<0.01)</u> DNA Replication DNA Repair (base excision and mismatch) Cell Cycle PI3K-AKT Signaling 		
• p<0.01		515		Expression Scale		
 ≥1.6 Fold Cha 1304 Genes 	nge		-2	Hierarchical Clustering +2		
Dose Depende	ent Gene Expressio	on Changes	Linhibition			
8	are glutamine dependent in KRAS-mutant tumor cells					

Oncogenic KRAS Reprograms Tumor Cell Metabolism

Increased glutamine metabolism

 Reductive glutamine metabolism can promote lipid synthesis via pyruvate and NADPH production

Increased glucose metabolism

- Glycolytic pyruvate anabolism can promote lipid synthesis
- Increased non-oxidative PPP
 biosynthesis and NADPH production

Glutamine enhances FASN sensitivity in KRAS-mutant tumor cell lines

• Model: glutamine and glucose metabolism products enable increased FASN activity in KRAS-mutant tumors

Activated KRAS reprograms tumor cell metabolism to increase utilization of glutamine and glucose. One of the consequences is high levels of pyruvate production. Son et al. 2013 *Nature;* Ying et al. 2012 *Cell*. A possible fate of pyruvate is metabolism to citrate and acetyl CoA, the substrate for palmitate synthesis by FASN.

FASNi Mechanism of Action in KRAS-Mutant NSCLC

FASN inhibition disrupts multiple Ras-driven effects on tumor cell biology and phenotype including:

- Increased palmitoylation of Ras-associated signaling proteins
 - Examples include NRas, EGFR, Akt, Cav1
- Ras-associated pathways involved in tumor cell growth, proliferation, and survival
 - Lipid raft architecture and membrane-associated protein localization is disrupted, e.g. NRas
 - Akt/mTor and b-catenin pathway signal transduction is inhibited
 - Gene expression of metabolic and non-metabolic biological pathways
- Canonical Wnt/β-catenin signaling via KRAS-mediated suppression of non-canonical Wnt signaling
 - FZD8 expression decreased in KRAS mutant cells, induced by FASN inhibition
 - RNA and protein expression of beta-catenin-regulated genes is diminished, e.g. Myc

Glutamine and glucose metabolism reprogramming, increased FASN activity

- Glutamine enhances FASN sensitivity of KRAS mutant tumor cell lines
- FASN inhibition blocks lipid synthesis and interferes with tumor cell metabolic requirements

FASN Inhibition Mechanism of Action Model

FASN Biomarker Discovery

- Diverse molecular and cell biology approach
- Utilize literature and current knowledge to investigate association between marker candidates and FASNi sensitivity
 - e.g. FASN expression in tumor or plasma/serum
- Develop preclinical in vitro and in vivo assays that enable the discovery of pathways, genes, and markers that:
 - Change in response to FASN inhibition (pharmacodynamic marker)
 - Predict sensitivity to FASN inhibition (prognostic marker)
- IHC, ELISA, DNA and RNA Sequencing, Western, mass spectrometry
- Example: Integrated analysis of gene expression and lipid/metabolite changes in response to FASN inhibition

TVB-2640 Inhibition of Rat Xenograft Tumor Growth Aligns with In Vitro Cell Line Sensitivity

TVB-2640 Induces Gene Expression Changes in Metabolic, Growth, Proliferation, and Survival Pathways

477 genes

- p<0.001
- ≥1.5 mean fold change in 60 and 100 mg/kg TVB-2640 dose groups

- QD x 17 dosing
- 2 hours post last dose

≥1.5 mean fold change in 100 mg/kg TVB-2640 dose group 3–V BIOSCIENCES

TVB-2640 Induces a Metabolic Signature of FASN Inhibition in COLO-205 Xenograft Tumors

- Elevated malonyl carnitine, decreased palmitic acid, and altered beta-oxidation among significant changes observed by metabolomic profiling
 - Concerted changes in gene expression

TVB-2640 Phase 1 Study

Standard Phase I Design

- Oral, once daily dosing
- Solid tumors

> Primary Objectives:

Safety, MTD, recommended Phase-2 dose

> MTD identified, currently in expansion cohorts

TVB-2640: Oral, Potent, Once Daily FASN Inhibitor with Excellent Human Exposure

TVB-2640 FASN inhibitor

- First in class
- Potent
- Highly selective
- Reversible

Pharmacokinetics in human

- Plasma levels increase with dose
- Mean half-life ~15 hours
- Steady state by day 8
- Exceeds preclinical efficacy threshold at all doses

Dose Escalation (n=30) TVB-2640 Monotherapy

- Evaluated doses from 60-240mg/m² including flat dosing
- 6 DLTs*:
 - 3 Skin @ 120mg/m² & 240mg/m²
 - 3 Eye @ 240mg/m² and 250mg

TVB-2640 Safety Summary

- **Reversible DLTs (Hand/Foot** \geq Syndrome, Eye Toxicity)
- Manageable RP2D skin and eye \succ toxicities: typically \leq Grade 2
- Onset of target-related AE's typically >14-21 days of dosing

Most Common (Incidence >10%) TEAEs	TVB-2640 Monotherapy (n = 53)			
(across all doses)	Any Incidence n (%)	Grade 3/4 n (%)		
Alopecia	30 (57)	1 (2)		
Eye disorders	26 (49)	3 (6)		
Palmar-plantar erythrodysesthesia syndrome	20 (38)	4 (8)		
Decreased appetite	7 (13)	0		
Diarrhoea	9 (17)	0		
Nausea	9 (17)	0		
Asthenia	4 (8)	0		
Dry skin	11 (21)	0		
Vomiting	4 (8)	0		
Abdominal pain	13 (25)	0		
Dehydration	1 (2)	0		
Skin exfoliation	8 (15)	0		
Constipation	1 (2)	0		
Pyrexia	2 (4)	1 (2)		
Urinary tract infection	5 (11)	1 (2)		

TVB-2640 Pharmacodynamic Activity in Patient Tumor and Serum

NSCLC Patients with Mutant KRAS Remain On Study Longer

10 NSCLC patients enrolled on TVB-2640 monotherapy

- 3 Kras-mutant
- 5 Kras-wild-type
- 2 unknown Kras status
- 100% Kras-mutant patients on study > 12 weeks
 - 0% KRAS-wild-type
- Similar plasma TVB-2640 exposure across mutant and wild-type patients

Summary and Conclusions

- KRAS activating mutations in NSCLC associate with sensitivity to FASN inhibition
- Preclinical studies identified multiple mechanisms of action for FASN inhibition efficacy that include:
 - Membrane and lipid raft architecture remodeling
 - Tumor cell gene expression reprogramming
 - Inhibition of c-Myc expression and AKT phosphorylation associates with preclinical in vitro and in vivo FASN sensitivity
- Preclinical and translational studies identified clinical PD markers and putative prognostic biomarkers
 - Malonyl carnitine, tripalmitin, saturated triglycerides
 - KRAS activating mutations, β-catenin expression/signaling

Acknowledgements

> 3-V Biosciences Scientific and Management Teams

